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Abstract. The general Besselian and Legendrian path integrals based on the confluent and
hypergeometric Natanzon potentials are calculated. These two solutions cover all other path-
integral representations which are related to the radial harmonic oscillator and the (modified)
Pöschl–Teller path integral.

The general structure of potentials usually known nowadays as Natanzon potentials was
introduced in [1]. With their six-parameter structure they are designed in such a way
that a wider range of shapes and potential wells is allowed in comparison with other
well known potential problems in quantum mechanics, e.g. the Morse potential, the radial
harmonic oscillator, the Coulomb potential, and the class of hypergeometric potentials as
contained in the P̈oschl–Teller and modified P̈oschl–Teller potentials [2], e.g. the Rosen–
Morse, Manning–Rosen, Eckart, Scarf-like, or the Hultén potential. They are subject to
many applications, e.g. in the study of solvable potentials in quantum mechanics in general,
cf [3–10], in the study of molecular physics for modelling a more realistic single-particle
electronic shell structure, in atomic physics for quark–antiquark forces, charge densities of
nuclei, or in solid state physics, cf e.g. [4, 5] and references therein. These two classes
of Natanzon potentials cover most known potentials for which an analytic solution to the
bound and continuous state problem can be found.

After the publication of the original paper [1], where already the general structure of
the solutions, i.e. the energy eigenvalue conditions, the (unnormalized) wavefunctions, and
(in the confluent case) the Green function, was derived, a considerable amount of work was
devoted to the study of the dynamical symmetry of these potentials. It turned out that the
spectrum generating algebra is of aSO(2, 1) structure, e.g. [3, 4, 7, 8]. Also the relation
to supersymmetric quantum mechanics was investigated, e.g. [9, 11–13]. A subclass of a
two-parameter symmetric hypergeometric Natanzon potential was studied in [4, 6, 11]. In
general, the Natanzon potentials turn out not to be shape invariant [11].

However, for the two most general classes of Natanzon potentials there seems to exist
no systematic path-integral discussion. The only exception was [6], where a two-parameter
hypergeometric subclass was investigated by path integration. The purpose of this letter
is to fill this gap. The two path-integral solutions of the confluent and hypergeometric
Natanzon potentials which I find accessible to path integration by means of the path integral
representation of the radial harmonic oscillator and the (modified) Pöschl–Teller potential, I
want to call thegeneral BesselianandLegendrian path integrals, respectively. By choosing
a path-integral approach we succeed in gaining comprehensive information about the bound-
state solutions of these potentials (if they exist), and what is often more important, about
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the scattering states which eventually allow for the calculation of cross sections and phase
shifts. As we shall see, in both cases it is only possible to evaluate the corresponding
Green function of the problem, and not the propagator itself. However, I consider this a
purely technical difficulty, and not as a principal conceptual drawback of the path-integral
calculations.

Let us start with the case of the hypergeometric Natanzon potentials. I use the canonical
path-integral formulation as developed in, for example, [14–18]. The potentials are defined
by (note the different notations used in the literature)

V (r) = h̄2

2m

f z(z − 1) + h0(1 − z) + h1z

R(z)
+ h̄2

8m

(
3

(
z′′

z′

)2

− 2
z′′′

z′

)
(1)

where R(z) = a0z
2 + b0z + c0, and z = z(r) is implicitly defined by the differential

equationz′ = 2z(1 − z)/
√

R(z). The variablez varies in the intervalz ∈ (0, 1). In order
to calculate the path integral representation corresponding to the potential (1) we perform
the transformationr 7→ z together with the time substitution dt = dx/z′ 2 according to, e.g.,
[17–19] and references therein, such that the new pseudo-times ′′ can be introduced via the
constraint

∫ s ′′

0 ds/z′ 2 = T = t ′′ = t ′. This space–time transformation causes the emerging
Schwarz derivative to cancel with the ¯h2-term and gives the path-integral representation
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We perform a further space–time transformationz = tanh2 x, x > 0, together with the time
substitution dt = 4 tanh2 x ds/ cosh4 x. The quantum potential emerging from the Schwarz
derivative ofz with respect tox is given by1V = h̄2(4+ 3/ sinh2 x − 3/ cosh2 x)/8m, and
we obtain the path-integral representation for the modified Pöschl–Teller potential with the
solution according to [18, 20–22]

K(r ′′, r ′; T ) =
(
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with the Green functionG(E) of the hypergeometric Natanzon potential given by

G(r ′′, r ′; E) = (
R(r ′)R(r ′′)

)1/4 m

h̄2

0(m1 − Lν)0(Lν + m1 + 1)
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× (
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)(m1−m2)/2 (
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)
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>

)
. (4)

2F1(a, b; c; z) is the hypergeometric function. Here I denotem1,2 = 1
2(η ±√−2mE′/h̄), Lν = 1

2(ν − 1), and I have abbreviated

η2 = h0 + 1 − 2mc0E

h̄2 ν2 = f + 1 − 2ma0E

h̄2 (5)

andE′ = (a0 +b0 + c0)E − h̄2(h1 + 1)/2m. Note that the numbersη andν are square roots
and the specific sign they take may vary in different examples. The poles of the Green
function determine the bound-state energy eigenvaluesEn(n ∈ N0)√
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h̄2 −
√
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√
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(6)

Equation (6) is an equation of fourth degree inEn and can be cast into the canonical
form (B1 = h̄2

2m
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2m
(f + 1), C1 = h̄2
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(8)

Equation (7) can be solved by considering the solutions of the quadratic equation [26]

E2
n + (b + A)

En

2
+ y + by − d

A
= 0 (9)

whereA = ±
√

8y + b2 − 4c, andy is any of the real roots of the cubic equation

8y3 − 4cy2 + (2bd − 8e)y + e(4c − b2) − d2 = 0 . (10)

The residua at the poles of the Green function give the correctly normalized bound-state
wavefunctions in terms of Jacobi polynomials inz(r), and the analysis of the behaviour of
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G(E) on the cuts yields the scattering states. In the special case of [4, 6, 11] equation (7)
reduces to a quadratic equation inEn, which is easy to solve. The results concerning the
bound states coincide with [1, 8, 11–13].

The class of the confluent Natanzon potentials can be obtained by the substitution [1]
a0 = σ2/τ

2, b0 = σ1/τ, f = g2/τ
2, h1 − h0 − f = g1/τ, z = h/τ , and taking into account

the limit τ → 0. This yields

V (r) = h̄2

2m

g2h
2 + g1h + η

R(r)
+ h̄2

8m
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3
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− 2
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)
(11)

whereR(r) = σ2h
2+σ1h+c0 andh = h(r) is implicitly defined by the differential equation

h′/2h = 1/
√

R(r). The variabler and the functionh = h(r) are assumed to be positive.
In order to make the corresponding representation of the propagator of the potential (11)
accessible to path integration we perform the transformation from the coordinater 7→ h

accompanied by the time substitution dt = R(h) ds/4h2. This space–time transformation
causes the emerging Schwarz derivative to cancel with the ¯h2-term and gives the path-
integral representation of the Coulomb potential in the polar coordinateh. This in turn can
be evaluated by a further space–time transformation by means of the path-integral solution of
the radial harmonic oscillator [23], e.g. [16, 18, 19, 24, 25] and references therein. Therefore
we obtain
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∫ r(t ′′)=r ′′
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with the Green functionG(E) of the confluent Natanzon potential given by

G(r ′′, r ′; E) =
(√

R(r ′)R(r ′′)
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Wκ,λ(z) andMκ,λ(z) are Whittaker functions. Here we denote
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4h̄

√
− m

2E′ (14)

andE′ = (σ2E −h̄2g2/2m)/4. From the poles in the Green function the bound-state energy
eigenvaluesEn can be determined by the equation(n ∈ N0)
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which is again an equation of fourth degree inEn and can be cast into the canonical form
(η̃ = (2n + 1)2 + η + 1, η̂ = (2n + 1)2 − η − 1)

E4
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(17)

Equation (16) can be solved in the same way as (7). The results coincide with, for
example, [1, 7, 11, 13]. Taking the residua inG(E) yields the correctly normalized bound-
state wavefunctions which are proportional to Laguerre polynomials inh(r), and the
scattering states are determined by analysing the cuts inG(E), and are proportional to
Whittaker functions. In particular, the bound-state solutions stated in the literature lack
the proper normalization, and the continuous spectrum is completely neglected in most
treatments. Due to the wide range of classes covered by the confluent Natanzon potential
it cannot be expected that a simple formula for the scattering states can be derived for
all cases. Because the roots of the equations (7) and (16) are known analytically, the
explicit form of the bound-state wavefunctions, if they exist, can be derived in principle.
However, due to the very complicated structure of the relevant equations, this is omitted
here.

In this letter I have presented a path-integral treatment for the hypergeometric and
confluent Natanzon potentials, which I have called the general Legendrian and Besselian
path integrals, respectively. In both cases a space–time transformation was essential in
order to solve the problem. My approach shows that the path integral is superior to other
methods [27]. The path integral provides the natural way in which the structure of the
solutions is manifest. In spite of the fact that the bound-state energy-level conditions are
rather complicated, closed-form solutions in terms of the Green functions are still possible.
This is quite surprising because the exact analytic form of a particular Natanzon potential
is only implicitly defined and may even not be known analytically. The poles of the Green
functions gave the bound-state energy levels, and the cuts provided the scattering states.
The fact that the eigenvalue equations forEn are actually fourth-degree equations does not
seem to have been noticed previously. In addition, the Green function representation of the
hypergeometric Natanzon potentials is not yet available in the literature. Therefore the two
path-integral representations (4) and (13) now containall former path-integral solutions as
special cases, and at the same time generalizing them, except where, in addition, particular
boundary conditions must be taken into account, cf e.g. [5].

The results are very satisfactory. The Schrödinger approach, be it the usual study in non-
relativistic quantum mechanics or a supersymmetric investigation, fails to see the potential
problem as a whole. In comparison, the path integral provides comprehensive information,
about the propagator, in the case where it can be computed explicitly, the Green function
with its poles and cuts, the bound-state wavefunctions, the continuous spectrum and the
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necessary boundary conditions. The latter could be extracted by a detailed Green function
analysis.

A generalization of the one-dimensional Natanzon potentials to a three-dimensional
investigation is straightforward as long as one is allowed to choose the angular momentum
dependence freely. The examples of [4] show that this is not always the case, or the question
of physical reasonability may arise.

Let us finally note that by some appropriate changes the notion ‘conditionally solvable’
can be given to a modification of the potential (11). The choicesc0 = η = 0,
g1h 7→ g1h

3, and σ1h 7→ σ1h
4, respectively,c0 = η = 0, g1h 7→ g1h

4, σ1h 7→ σ1h
3

produce generalizations of the two kinds of conditionally solvable potentials as discussed
in [5]. They have been called a modified Coulomb potential and a radial confinement
potential, respectively. These new ‘conditionally solvable Natanzon potentials’ have four
free parameters. Of course, a similar consideration can be made for (1), where four new
classes can be found [28].

I would like to thank the members of the Joint Institute for Nuclear Research, Dubna, where
part of this work was done, in particular G Pogosyan, for their kind hospitality.
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